Source: geom/Plane.js

/*
 * Copyright 2003-2006, 2009, 2017, United States Government, as represented by the Administrator of the
 * National Aeronautics and Space Administration. All rights reserved.
 *
 * The NASAWorldWind/WebWorldWind platform is licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/**
 * @exports Plane
 */
define([
        '../error/ArgumentError',
        '../geom/Line',
        '../util/Logger',
        '../geom/Vec3'
    ],
    function (ArgumentError,
              Line,
              Logger,
              Vec3) {
        "use strict";

        /**
         * Constructs a plane.
         * This constructor does not normalize the components. It assumes that a unit normal vector is provided.
         * @alias Plane
         * @constructor
         * @classdesc Represents a plane in Cartesian coordinates.
         * The plane's X, Y and Z components indicate the plane's normal vector. The distance component
         * indicates the plane's distance from the origin relative to its unit normal.
         * The components are expected to be normalized.
         * @param {Number} x The X coordinate of the plane's unit normal vector.
         * @param {Number} y The Y coordinate of the plane's unit normal vector.
         * @param {Number} z The Z coordinate of the plane's unit normal vector.
         * @param {Number} distance The plane's distance from the origin.
         */
        var Plane = function (x, y, z, distance) {
            /**
             * The normal vector to the plane.
             * @type {Vec3}
             */
            this.normal = new Vec3(x, y, z);

            /**
             * The plane's distance from the origin.
             * @type {Number}
             */
            this.distance = distance;
        };

        /**
         * Computes a plane that passes through the specified three points.
         * The plane's normal is the cross product of the
         * two vectors from pb to pa and pc to pa, respectively. The
         * returned plane is undefined if any of the specified points are colinear.
         *
         * @param {Vec3} pa The first point.
         * @param {Vec3} pb The second point.
         * @param {Vec3} pc The third point.
         *
         * @return {Plane} A plane passing through the specified points.
         *
         * @throws {ArgumentError} if pa, pb, or pc is null or undefined.
         */
        Plane.fromPoints = function(pa, pb, pc) {
            if (!pa || !pb || !pc) {
                throw new ArgumentError(
                    Logger.logMessage(Logger.LEVEL_SEVERE, "Plane", "fromPoints", "missingVector"));
            }

            var vab = new Vec3(pb[0], pb[1], pb[2]);
            vab.subtract(pa);
            var vac = new Vec3(pc[0], pc[1], pc[2]);
            vac.subtract(pa);
            vab.cross(vac);
            vab.normalize();
            var d = -vab.dot(pa);

            return new Plane(vab[0], vab[1], vab[2], d);
        };

        /**
         * Computes the dot product of this plane's normal vector with a specified vector.
         * Since the plane was defined with a unit normal vector, this function returns the distance of the vector from
         * the plane.
         * @param {Vec3} vector The vector to dot with this plane's normal vector.
         * @returns {Number} The computed dot product.
         * @throws {ArgumentError} If the specified vector is null or undefined.
         */
        Plane.prototype.dot = function (vector) {
            if (!vector) {
                throw new ArgumentError(
                    Logger.logMessage(Logger.LEVEL_SEVERE, "Plane", "dot", "missingVector"));
            }

            return this.normal.dot(vector) + this.distance;
        };

        /**
         * Computes the distance between this plane and a point.
         * @param {Vec3} point The point whose distance to compute.
         * @returns {Number} The computed distance.
         * @throws {ArgumentError} If the specified point is null or undefined.
         */
        Plane.prototype.distanceToPoint = function (point) {
            return this.dot(point);
        };

        /**
         * Transforms this plane by a specified matrix.
         * @param {Matrix} matrix The matrix to apply to this plane.
         * @returns {Plane} This plane transformed by the specified matrix.
         * @throws {ArgumentError} If the specified matrix is null or undefined.
         */
        Plane.prototype.transformByMatrix = function (matrix){
            if (!matrix) {
                throw new ArgumentError(
                    Logger.logMessage(Logger.LEVEL_SEVERE, "Plane", "transformByMatrix", "missingMatrix"));
            }

            var x = matrix[0] * this.normal[0] + matrix[1] * this.normal[1] + matrix[2] * this.normal[2] + matrix[3] * this.distance,
                y = matrix[4] * this.normal[0] + matrix[5] * this.normal[1] + matrix[6] * this.normal[2] + matrix[7] * this.distance,
                z = matrix[8] * this.normal[0] + matrix[9] * this.normal[1] + matrix[10] * this.normal[2] + matrix[11] * this.distance,
                distance = matrix[12] * this.normal[0] + matrix[13] * this.normal[1] + matrix[14] * this.normal[2] + matrix[15] * this.distance;

            this.normal[0] = x;
            this.normal[1] = y;
            this.normal[2] = z;
            this.distance = distance;
            
            return this;
        };

        /**
         * Normalizes the components of this plane.
         * @returns {Plane} This plane with its components normalized.
         */
        Plane.prototype.normalize = function () {
            var magnitude = this.normal.magnitude();

            if (magnitude === 0)
                return this;

            this.normal.divide(magnitude);
            this.distance /= magnitude;

            return this;
        };

        /**
         * Determines whether a specified line segment intersects this plane.
         *
         * @param {Vec3} endPoint1 The first end point of the line segment.
         * @param {Vec3} endPoint2 The second end point of the line segment.
         * @returns {Boolean} true if the line segment intersects this plane, otherwise false.
         */
        Plane.prototype.intersectsSegment = function(endPoint1, endPoint2) {
            var distance1 = this.dot(endPoint1),
                distance2 = this.dot(endPoint2);

            return distance1 * distance2 <= 0;
        };

        /**
         * Computes the intersection point of this plane with a specified line segment.
         *
         * @param {Vec3} endPoint1 The first end point of the line segment.
         * @param {Vec3} endPoint2 The second end point of the line segment.
         * @param {Vec3} result A variable in which to return the intersection point of the line segment with this plane.
         * @returns {Boolean} true If the line segment intersects this plane, otherwise false.
         */
        Plane.prototype.intersectsSegmentAt = function (endPoint1, endPoint2, result) {
            // Compute the distance from the end-points.
            var distance1 = this.dot(endPoint1),
                distance2 = this.dot(endPoint2);

            // If both points points lie on the plane, ...
            if (distance1 === 0 && distance2 === 0) {
                // Choose an arbitrary endpoint as the intersection.
                result[0] = endPoint1[0];
                result[1] = endPoint1[1];
                result[2] = endPoint1[2];

                return true;
            }
            else if (distance1 === distance2) {
                // The intersection is undefined.
                return false;
            }

            var weight1 = -distance1 / (distance2 - distance1),
                weight2 = 1 - weight1;

            result[0] = weight1 * endPoint1[0] + weight2 * endPoint2[0];
            result[1] = weight1 * endPoint1[1] + weight2 * endPoint2[1];
            result[2] = weight1 * endPoint1[2] + weight2 * endPoint2[2];

            return distance1 * distance2 <= 0;
        };

        /**
         * Determines whether two points are on the same side of this plane.
         *
         * @param {Vec3} pointA the first point.
         * @param {Vec3} pointB the second point.
         *
         * @return {Number} -1 If both points are on the negative side of this plane, +1 if both points are on the
         * positive side of this plane, 0 if the points are on opposite sides of this plane.
         *
         * @throws {ArgumentError} If either point is null or undefined.
         */
        Plane.prototype.onSameSide = function (pointA, pointB) {
            if (!pointA || !pointB) {
                throw new ArgumentError(
                    Logger.logMessage(Logger.LEVEL_SEVERE, "Plane", "onSameSide", "missingPoint"));
            }

            var da = this.distanceToPoint(pointA),
                db = this.distanceToPoint(pointB);

            if (da < 0 && db < 0)
                return -1;

            if (da > 0 && db > 0)
                return 1;

            return 0;
        };

        /**
         * Clips a line segment to this plane.
         * @param {Vec3} pointA The first line segment endpoint.
         * @param {Vec3} pointB The second line segment endpoint.
         *
         * @returns {Vec3[]}  An array of two points both on the positive side of the plane. If the direction of the line formed by the
         *         two points is positive with respect to this plane's normal vector, the first point in the array will be
         *         the intersection point on the plane, and the second point will be the original segment end point. If the
         *         direction of the line is negative with respect to this plane's normal vector, the first point in the
         *         array will be the original segment's begin point, and the second point will be the intersection point on
         *         the plane. If the segment does not intersect the plane, null is returned. If the segment is coincident
         *         with the plane, the input points are returned, in their input order.
         *
         * @throws {ArgumentError} If either point is null or undefined.
         */
        Plane.prototype.clip = function (pointA, pointB) {
            if (!pointA || !pointB) {
                throw new ArgumentError(
                    Logger.logMessage(Logger.LEVEL_SEVERE, "Plane", "clip", "missingPoint"));
            }

            if (pointA.equals(pointB)) {
                return null;
            }

            // Get the projection of the segment onto the plane.
            var line = Line.fromSegment(pointA, pointB),
                lDotV = this.normal.dot(line.direction),
                lDotS, t, p;

            // Are the line and plane parallel?
            if (lDotV === 0) { // line and plane are parallel and may be coincident.
                lDotS = this.dot(line.origin);
                if (lDotS === 0) {
                    return [pointA, pointB]; // line is coincident with the plane
                } else {
                    return null; // line is not coincident with the plane.
                }
            }

            // Not parallel so the line intersects. But does the segment intersect?
            t = -this.dot(line.origin) / lDotV; // lDotS / lDotV
            if (t < 0 || t > 1) { // segment does not intersect
                return null;
            }

            p = line.pointAt(t, new Vec3(0, 0, 0));
            if (lDotV > 0) {
                return [p, pointB];
            } else {
                return [pointA, p];
            }
        };

        return Plane;
    });