Source: projections/ProjectionWgs84.js

/*
 * Copyright 2003-2006, 2009, 2017, United States Government, as represented by the Administrator of the
 * National Aeronautics and Space Administration. All rights reserved.
 *
 * The NASAWorldWind/WebWorldWind platform is licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/**
 * @exports ProjectionWgs84
 */
define([
        '../geom/Angle',
        '../error/ArgumentError',
        '../projections/GeographicProjection',
        '../util/Logger',
        '../geom/Position',
        '../geom/Vec3',
        '../util/WWMath'
    ],
    function (Angle,
              ArgumentError,
              GeographicProjection,
              Logger,
              Position,
              Vec3,
              WWMath) {
        "use strict";

        /**
         * Constructs a WGS84 ellipsoid
         * @alias ProjectionWgs84
         * @constructor
         * @augments GeographicProjection
         * @classdesc Represents a WGS84 ellipsoid.
         */
        var ProjectionWgs84 = function () {

            GeographicProjection.call(this, "WGS84", false, null);

            this.is2D = false;

            this.scratchPosition = new Position(0, 0, 0);
        };

        ProjectionWgs84.prototype = Object.create(GeographicProjection.prototype);

        Object.defineProperties(ProjectionWgs84.prototype, {
            /**
             * A string identifying this projection's current state. Used to compare states during rendering to
             * determine whether globe-state dependent cached values must be updated. Applications typically do not
             * interact with this property.
             * @memberof ProjectionEquirectangular.prototype
             * @readonly
             * @type {String}
             */
            stateKey: {
                get: function () {
                    return "projection wgs84 ";
                }
            }
        });

        // Documented in base class.
        ProjectionWgs84.prototype.geographicToCartesian = function (globe, latitude, longitude, altitude, offset,
                                                                    result) {
            if (!globe) {
                throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "ProjectionWgs84",
                    "geographicToCartesian", "missingGlobe"));
            }

            var cosLat = Math.cos(latitude * Angle.DEGREES_TO_RADIANS),
                sinLat = Math.sin(latitude * Angle.DEGREES_TO_RADIANS),
                cosLon = Math.cos(longitude * Angle.DEGREES_TO_RADIANS),
                sinLon = Math.sin(longitude * Angle.DEGREES_TO_RADIANS),
                rpm = globe.equatorialRadius / Math.sqrt(1.0 - globe.eccentricitySquared * sinLat * sinLat);

            result[0] = (rpm + altitude) * cosLat * sinLon;
            result[1] = (rpm * (1.0 - globe.eccentricitySquared) + altitude) * sinLat;
            result[2] = (rpm + altitude) * cosLat * cosLon;

            return result;
        };

        // Documented in base class.
        ProjectionWgs84.prototype.geographicToCartesianGrid = function (globe, sector, numLat, numLon, elevations,
                                                                        referencePoint, offset, result) {
            if (!globe) {
                throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "ProjectionWgs84",
                    "geographicToCartesianGrid", "missingGlobe"));
            }

            var minLat = sector.minLatitude * Angle.DEGREES_TO_RADIANS,
                maxLat = sector.maxLatitude * Angle.DEGREES_TO_RADIANS,
                minLon = sector.minLongitude * Angle.DEGREES_TO_RADIANS,
                maxLon = sector.maxLongitude * Angle.DEGREES_TO_RADIANS,
                deltaLat = (maxLat - minLat) / (numLat > 1 ? numLat - 1 : 1),
                deltaLon = (maxLon - minLon) / (numLon > 1 ? numLon - 1 : 1),
                refCenter = referencePoint ? referencePoint : new Vec3(0, 0, 0),
                latIndex, lonIndex,
                elevIndex = 0, resultIndex = 0,
                lat, lon, rpm, elev,
                cosLat, sinLat,
                cosLon = new Float64Array(numLon), sinLon = new Float64Array(numLon);

            // Compute and save values that are a function of each unique longitude value in the specified sector. This
            // eliminates the need to re-compute these values for each column of constant longitude.
            for (lonIndex = 0, lon = minLon; lonIndex < numLon; lonIndex++, lon += deltaLon) {
                if (lonIndex === numLon - 1) {
                    lon = maxLon; // explicitly set the last lon to the max longitude to ensure alignment
                }

                cosLon[lonIndex] = Math.cos(lon);
                sinLon[lonIndex] = Math.sin(lon);
            }

            // Iterate over the latitude and longitude coordinates in the specified sector, computing the Cartesian
            // point corresponding to each latitude and longitude.
            for (latIndex = 0, lat = minLat; latIndex < numLat; latIndex++, lat += deltaLat) {
                if (latIndex === numLat - 1) {
                    lat = maxLat; // explicitly set the last lat to the max longitude to ensure alignment
                }

                // Latitude is constant for each row. Values that are a function of latitude can be computed once per row.
                cosLat = Math.cos(lat);
                sinLat = Math.sin(lat);
                rpm = globe.equatorialRadius / Math.sqrt(1.0 - globe.eccentricitySquared * sinLat * sinLat);

                for (lonIndex = 0; lonIndex < numLon; lonIndex++) {
                    elev = elevations[elevIndex++];
                    result[resultIndex++] = (rpm + elev) * cosLat * sinLon[lonIndex] - refCenter[0];
                    result[resultIndex++] = (rpm * (1.0 - globe.eccentricitySquared) + elev) * sinLat - refCenter[1];
                    result[resultIndex++] = (rpm + elev) * cosLat * cosLon[lonIndex] - refCenter[2];
                }
            }

            return result;
        };

        // Documented in base class.
        ProjectionWgs84.prototype.cartesianToGeographic = function (globe, x, y, z, offset, result) {
            if (!globe) {
                throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "ProjectionWgs84",
                    "cartesianToGeographic", "missingGlobe"));
            }

            // According to H. Vermeille, "An analytical method to transform geocentric into geodetic coordinates"
            // http://www.springerlink.com/content/3t6837t27t351227/fulltext.pdf
            // Journal of Geodesy, accepted 10/2010, not yet published
            var X = z,
                Y = x,
                Z = y,
                XXpYY = X * X + Y * Y,
                sqrtXXpYY = Math.sqrt(XXpYY),
                a = globe.equatorialRadius,
                ra2 = 1 / (a * a),
                e2 = globe.eccentricitySquared,
                e4 = e2 * e2,
                p = XXpYY * ra2,
                q = Z * Z * (1 - e2) * ra2,
                r = (p + q - e4) / 6,
                h,
                phi,
                u,
                evoluteBorderTest = 8 * r * r * r + e4 * p * q,
                rad1,
                rad2,
                rad3,
                atan,
                v,
                w,
                k,
                D,
                sqrtDDpZZ,
                e,
                lambda,
                s2;

            if (evoluteBorderTest > 0 || q != 0) {
                if (evoluteBorderTest > 0) {
                    // Step 2: general case
                    rad1 = Math.sqrt(evoluteBorderTest);
                    rad2 = Math.sqrt(e4 * p * q);

                    // 10*e2 is my arbitrary decision of what Vermeille means by "near... the cusps of the evolute".
                    if (evoluteBorderTest > 10 * e2) {
                        rad3 = WWMath.cbrt((rad1 + rad2) * (rad1 + rad2));
                        u = r + 0.5 * rad3 + 2 * r * r / rad3;
                    }
                    else {
                        u = r + 0.5 * WWMath.cbrt((rad1 + rad2) * (rad1 + rad2))
                            + 0.5 * WWMath.cbrt((rad1 - rad2) * (rad1 - rad2));
                    }
                }
                else {
                    // Step 3: near evolute
                    rad1 = Math.sqrt(-evoluteBorderTest);
                    rad2 = Math.sqrt(-8 * r * r * r);
                    rad3 = Math.sqrt(e4 * p * q);
                    atan = 2 * Math.atan2(rad3, rad1 + rad2) / 3;

                    u = -4 * r * Math.sin(atan) * Math.cos(Math.PI / 6 + atan);
                }

                v = Math.sqrt(u * u + e4 * q);
                w = e2 * (u + v - q) / (2 * v);
                k = (u + v) / (Math.sqrt(w * w + u + v) + w);
                D = k * sqrtXXpYY / (k + e2);
                sqrtDDpZZ = Math.sqrt(D * D + Z * Z);

                h = (k + e2 - 1) * sqrtDDpZZ / k;
                phi = 2 * Math.atan2(Z, sqrtDDpZZ + D);
            }
            else {
                // Step 4: singular disk
                rad1 = Math.sqrt(1 - e2);
                rad2 = Math.sqrt(e2 - p);
                e = Math.sqrt(e2);

                h = -a * rad1 * rad2 / e;
                phi = rad2 / (e * rad2 + rad1 * Math.sqrt(p));
            }

            // Compute lambda
            s2 = Math.sqrt(2);
            if ((s2 - 1) * Y < sqrtXXpYY + X) {
                // case 1 - -135deg < lambda < 135deg
                lambda = 2 * Math.atan2(Y, sqrtXXpYY + X);
            }
            else if (sqrtXXpYY + Y < (s2 + 1) * X) {
                // case 2 - -225deg < lambda < 45deg
                lambda = -Math.PI * 0.5 + 2 * Math.atan2(X, sqrtXXpYY - Y);
            }
            else {
                // if (sqrtXXpYY-Y<(s2=1)*X) {  // is the test, if needed, but it's not
                // case 3: - -45deg < lambda < 225deg
                lambda = Math.PI * 0.5 - 2 * Math.atan2(X, sqrtXXpYY + Y);
            }

            result.latitude = Angle.RADIANS_TO_DEGREES * phi;
            result.longitude = Angle.RADIANS_TO_DEGREES * lambda;
            result.altitude = h;

            return result;
        };

        ProjectionWgs84.prototype.northTangentAtLocation = function (globe, latitude, longitude, result) {
            // The north-pointing tangent is derived by rotating the vector (0, 1, 0) about the Y-axis by longitude degrees,
            // then rotating it about the X-axis by -latitude degrees. The latitude angle must be inverted because latitude
            // is a clockwise rotation about the X-axis, and standard rotation matrices assume counter-clockwise rotation.
            // The combined rotation can be represented by a combining two rotation matrices Rlat, and Rlon, then
            // transforming the vector (0, 1, 0) by the combined transform:
            //
            // NorthTangent = (Rlon * Rlat) * (0, 1, 0)
            //
            // This computation can be simplified and encoded inline by making two observations:
            // - The vector's X and Z coordinates are always 0, and its Y coordinate is always 1.
            // - Inverting the latitude rotation angle is equivalent to inverting sinLat. We know this by the
            //  trigonometric identities cos(-x) = cos(x), and sin(-x) = -sin(x).

            var cosLat = Math.cos(latitude * Angle.DEGREES_TO_RADIANS),
                cosLon = Math.cos(longitude * Angle.DEGREES_TO_RADIANS),
                sinLat = Math.sin(latitude * Angle.DEGREES_TO_RADIANS),
                sinLon = Math.sin(longitude * Angle.DEGREES_TO_RADIANS);

            result[0] = -sinLat * sinLon;
            result[1] = cosLat;
            result[2] = -sinLat * cosLon;

            return result.normalize();
        };

        ProjectionWgs84.prototype.northTangentAtPoint = function (globe, x, y, z, offset, result) {
            this.cartesianToGeographic(globe, x, y, z, Vec3.ZERO, this.scratchPosition);

            return this.northTangentAtLocation(globe, this.scratchPosition.latitude, this.scratchPosition.longitude, result);
        };

        ProjectionWgs84.prototype.surfaceNormalAtLocation = function (globe, latitude, longitude, result) {
            var cosLat = Math.cos(latitude * Angle.DEGREES_TO_RADIANS),
                cosLon = Math.cos(longitude * Angle.DEGREES_TO_RADIANS),
                sinLat = Math.sin(latitude * Angle.DEGREES_TO_RADIANS),
                sinLon = Math.sin(longitude * Angle.DEGREES_TO_RADIANS);

            result[0] = cosLat * sinLon;
            result[1] = sinLat;
            result[2] = cosLat * cosLon;

            return result.normalize();
        };

        ProjectionWgs84.prototype.surfaceNormalAtPoint = function (globe, x, y, z, result) {
            if (!globe) {
                throw new ArgumentError(Logger.logMessage(Logger.LEVEL_SEVERE, "ProjectionWgs84",
                    "surfaceNormalAtPoint", "missingGlobe"));
            }

            var a2 = globe.equatorialRadius * globe.equatorialRadius,
                b2 = globe.polarRadius * globe.polarRadius;

            result[0] = x / a2;
            result[1] = y / b2;
            result[2] = z / a2;

            return result.normalize();
        };

        return ProjectionWgs84;
    });